academicresearchJournals

Vol. 4(6), pp. 321-329, November 2016 DOI: 10.14662/ARJASR2016.038 Copy©right 2016 Author(s) retain the copyright of this article ISSN: 2360-7874 http://www.academicresearchjournals.org/ARJASR/Index.htm

Academic Research Journal of Agricultural Science and Research

Full Length Research

Influence of plant population density on growth and yield of Stevia (Stevia rebaudiana Bertoni L.) at Wondo Genet South Ethiopia

Nebret Tadesse*¹, Aynalem Gebere¹, Belstie Lulie¹ and Melkamu Hordofa¹

¹Wondo Genet Agricultural Research Center, EIAR, P.O. Box: 198, Shashemene, Ethiopia. Corresponding author email: nibrettadesse@gmai.com

Accepted 7 November 2016

An experiment was conducted at Wondo Genet Agricultural Research Center in the production season of 2013/14 and 2014/15 with the objective of identifying the best combination of intra and inter-row spacing for optimum plant population density of stevia. The experiment was conducted using five intrarow spacing (20cm, 25cm, 30cm, 35cm, and 40cm) and three inter-row spacing (40cm, 50cm and 60cm) with a total treatment combination of fifteen that were laid out in factorial RCBD design with three replications. In 2013/14 cropping season the maximum fresh leaf weight (19467kg ha⁻¹), fresh aboveground biomass (25002kg ha⁻¹) and dry leaf weigh (7834kg ha⁻¹) were obtained from the combined pacing of 20cm intra-row and 40cm inter-row spacing. In 2014/15 cropping season, the maximum fresh leaf weight (16470.1 kg ha-1) and (14433.9kg ha-1), fresh aboveground biomass (27547kg ha⁻¹) and (23619.8kg ha⁻¹) and dry leaf weight (4773.7 kg ha⁻¹) and (4314.0 kg ha⁻¹) were obtained from 20cm intra-row and 40cm inter-row spacing respectively. Although the study showed that the highest Stevia herbage yield per unit area was recorded from the combined spacing of 20cm intra-row and 40cm inter-row and inter-row spacing for Stevia is 25cm x 40cm to attain maximum yield under appropriate management conditions at Wondo genet and similar locations.

Keywords: Stevia, Inter-row, Intra- row, Spacing, Plant population.

Cite this article as: Tadesse N, Gebere A, Lulie B, Hordofa M (2016). Influence of plant population density on growth and yield of Stevia (*Stevia rebaudiana Bertoni* L.) at Wondo Genet South Ethiopia. Acad. Res. J. Agri. Sci. Res. 4(6): 321-329

INTRODUCTION

Stevia (Stevia rebaudiana L. Bertoni) is a perennial herb that belongs to the family Asteraceae (Ahmed *et al.*, 2007; Ojha *et al.*, 2010). It is native to South and Central America (Debnath, 2008; Jackson *et al.*, 2009; Robinson and King, 1977; Sumon *et al.*, 2008). The first commercial cultivation of stevia was started in Paraguay around 1964 (Katayama *et al.*, 1976). Currently it is cultivated in Japan, Taiwan, Philippines, Hawaii, Malaysia

and overall South America for food and pharmaceutical products (Ahmed *et al.*, 2007; Debnath, 2008; Sumon *et al.*, 2008). In Ethiopia, it can be cultivated from mid highland to highland parts of the country. However, it cannot be recommended in saline soil for its cultivation. It can grow well between 1600 and 2700 m from mean sea level where the rainfall averages about 800-1700 mm annually. The leaves of Stevia are the source of steviol

glycosides, stevioside and rebaudioside, which estimated to be 300 times sweeter than sugar, but also have no effect on blood sugar, so it is helpful for hypoglycaemia and type 2 diabetes (Ramesh *et al.*, 2006; Soejorto, 2002).

According to Serio (2010), one planted hectare can produce between 1000 and 1200 kg of dried leaves that contain 60-70 kg stevioside, which is a low yield compared to sugar cane or sugar beet. However, 70 kg stevioside, which is 300 times sweeter than saccharose, is equivalent to a yield of 21,000 kg sugar per hectare. Agricultural factors such as spacing have critical effects on quantitative and qualitative characteristics of plants (Naghdi badi et al., 2004). Leaf yield increased with increasing density up to 83000 and 111000 plants/ha of Stevia for the first years of production (Madan et al., 2010). The optimum per acre plant population is prerequisite for higher yield of Stevia like other plants. It enables the plant to utilize land, light and other input resources uniformly and efficiently. Increasing plant population per unit area beyond a certain limit result in competition among the plants for sunlight, nutrients, moisture etc. and may cause severe lodging. So it is imperative to develop such a spacing pattern which may help avoiding excessive crowding and thereby enabling the Stevia plant to utilize these resources more effectively and efficiently towards increased production. Plant density is one of the most important cultural practices, determining herbage yield, as well as other important agronomic attributes of this crop (Taleie et al., 2012). Linear increase in biomass yield has been reported with increase in plant density until other production factors become limiting (Norsworthy and Emerson, 2005).

The effect of plant spacing on growth, and biomass yield of Stevia has not been intensively investigated. Stevia in Ethiopia being a new medicinal plant, most of the farmers and large scale producers are not aware of its basic agronomy and growing requirements. Keeping in view the potential of Stevia, the present study was planned with the objective to determine intra-row and inter-row spacing of optimum plant population density for obtaining maximum biomass production of Stevia.

MATERIAL AND METHODS

The research was conducted at Wondo Genet Agricultural Research Center's fields, in Southern Ethiopia during 2013/14 and 2014/15 growing seasons to evaluate the influence of plant population density on growth and biomass yield of Stevia (Stevia rebaudiana bertoni L.). Wondo Genet is located at $7^{0}192$ N latitude and 38^{0} 382 E longitude with an altitude of 1780m. a. s. l. The site receives a mean annual rainfall of 1000mm with minimum and maximum temperature of 10^{0} C and 30^{0} C, respectively. The soil is a sandy clay loam with an average pH of 7.2. The experiment was conducted using five intra-row spacing (20cm, 25cm, 30cm, 35cm, and 40cm) and three inter-row spacing (40cm, 50cm and 60cm) with a total treatment combination of fifteen that were laid out in factorial RCBD design with three replications.

For seedling preparation, soft stem cutting of 15 cm length was taken from a one year old disease free Stevia mother plants maintained at Wondo Genet Agricultural Research Center botanical garden. Seedlings were raised in the nursery for three months in polyethylene pots. Transplanting was done in October, 2013, First cycle harvesting was done three months after transplanting, and second cycle harvestings and third cycle harvestings were done at three month intervals for two consecutive years.

Data on plant height, number of branches per plant, were recorded from each harvesting cycle and the average value of each year was used for analysis. In addition to this, fresh leaf weight in gram plant⁻¹, fresh aboveground biomass, fresh leaf weight, and dry leaf weight in kg ha⁻¹ were taken three times in each year and the values summed up and analysed.

The collected data were statistically analysed using SAS computer software version 9.0 English and differences between means were assessed using the least significant difference (LSD) test at P < 0.05.

RESULT AND DISCUSSION

Plant height

Plant height was significantly (p<0.05) affected by the main effect of inter-row spacing in 2013/14 cropping season and by pooled mean, however, intra-row spacing and its interaction with inter-row was not significant (Table 1). In 2014/15 cropping season plant height was not affected by the main effect of intra- row and inter-row spacing and by their interaction (Table 2). During 2013/14 maximum plant height (46.9cm) and (47.4cm) were recorded from intra and inter-row spacing of 20cm and 40cm respectively (Table 3). Plant height was increased at closer spacing. This finding was consistent with the data reported by Taleie et al. (2012) who observed that taller Stevia plants were achieved by the closer spacing (50×20 cm). In contrast, Lee et al. (1980) had reported that plant height was unaffected by plant density of 50-70cm inter-row and 10-30cm intra-row spacing. An increase in plant height with decreased plant spacing was also reported by Khorshidi et al. (2009) in Fennel. Such an increase in plant height with increased plant density may be explained by increased activity of stem growth hormone for plant sunlight competition.

Table 1: Mean square analyses of variance of growth and yield parameters of stevia as affected by intra-row and inter row spacing in 2013/14 cropping season

Source	of DF	PH	NBPP	FLWgp ⁻¹	FLW kg ha ⁻¹	FAGB kg ha ⁻¹	DLW kg ha ⁻¹
variation							
Replication	2	22.04	67.3	2103.9	9834383.2	42727622.7	3439278.4
Intra- row	4	9.48ns	178.4*	4496.8**	41272705.4**	74207748.1**	7084573.8**
Inter row	2	26.45*	202.2*	5628.1**	28880392.4**	30714598.5*	3958008.6*
Intra x inter	8	1.563ns	27.01ns	968.6*	4586855.7*	12918906.6*	993399.82*
Error	16	3.43	14.80	220.1	1236442.0	3674206.9	343111.74
CV%		4.04	6.31	7.75	8.3	8.81	11.5

*Significant at p<0.05, ** highly significant at p<0.01, ns=Not Significant at p<0.05, Ph = Plant height, in cm NBPP= Number of branch per plant, FLW g p-1=fresh leaf weight gram per plant, FLWPH = fresh leaf weight kg per hectare, FAGBY =Fresh aboveground biomass weight kg per hectare, and DLWY= Dry leaf weight kg per hectare

Table 2: Mean square analyses of variance of growth and yield parameters of Stevia as affected by intra-row and inter row spacing in 2014/15

cropping season

Source of variation	DF	PH	NBPP	FLWP g p ⁻¹	FLW kg ha ⁻¹	AGFB kg ha ⁻¹	DLW kg ha ⁻¹
Replication	2	39.225	21.52	2880.8	11390383.7	37961710	1467591
Intra- row	4	12.0ns	71.81*	1097.4*	70952516 **	211829370**	5425129*
Inter- row	2	3.39ns	25.51ns	1448.79*	55381770**	142377760**	6171908*
Intra x inter-row	8	10.95ns	41.96ns	260.13ns	3609618.8ns	9703396.7ns	342678ns
Error	16	4.39	17.01	303	1893985.5	6178132	525204
CV%		5.48	12.3	9.9	11.05	12.12	19.9

*Significant at p<0.05, ** highly significant at p<0.01, ns=Not Significant at p<0.05, Ph = Plant height, NBPP= Number of branch per plant, fresh leaf weight gram per plant, FLWPH = fresh leaf weight kg per hectare, FAGBY =Fresh aboveground biomass weight kg per hectare, and DLWY= Dry leaf weight kg per hectare

Branch Number per plant

The main effect of intra-row and inter-row spacing had highly significant (P<0.01, Table 1) effect on the number of branches per plant during 2013/14 cropping season and pooled mean. However, their interaction had no significant (P>0.05) effect on the number of branches per plant. Maximum number of branch per plant (65) was recorded at 40cm intra-row spacing. While the lowest number of branches per plant (55) was obtained at closer spacing (20cm) intra-row spacing. For the inter-row spacing the highest number of branches per plant (65) was obtained from 60cm spacing. Whereas the lowest number of branches per plant (57) was obtained at 40cm spacing (Table 3). During 2014/15 cropping season the main effect of intra-row spacing showed significant (P<0.05) difference on the number of branches per plant, while the main effect of the inter-row and its interaction with intra- row was insignificant (Table 2). In 2014/15 the highest number of branch plant ⁻¹ (37) was recorded from 40cm intra-row spacing and the lowest number of branches per plant (30) was obtained from intra-row spacing of 20cm (Table 3). Number of branches per plant were increased in wider spacing. This finding is Table: 3 Main effects of intra-row and inter-row spacing on yield and yield components of Stevia for two consecutive cropping seasons (2013/14 to 2014/15).

Treatments Plant height (cm)				Branch number per plant			Fresh leaf weight(g p ⁻¹)		
Intra-row (cm)	2013/14	2014/15	Pooled	2013/14	2014/15	Pooled	2013/14	2014/15	Pooled
			mean			mean			mean
20	46.9a	39	42.9a	55d	30c	42.4c	161.3c	160.1b	160.70d
25	45.9ab	38	41.9ab	59c	32bc	45.2bc	181.8b	171.7b	176.75c
30	46.8a	38	42.4ab	61bc	33abc	47.2b	187.8b	174.1ab	180.95bc
35	44.5b	38	41.3b	64ab	36ab	50.7a	208.3a	176.2ab	192.25b
40	45.2ab	38	41.6b	65a	37a	50.6a	217.9a	190.9a	204.4a
LSD5%	1.8	Ns	1.32	3.8	4.1	2.95	14.8	17.39	12.1
Inter-row (cm)									
40	47.4a	39	43.2a	57c	32	44.70b	173.9c	164b	168.95c
50	44.8b	38	41.4b	61b	35	47.85a	189.7b	176ab	182.85b
60	45.4b	38	41.7b	65a	34	49.35a	211.6a	183a	197.30a
LSD5%	1.39	Ns	1.02	2.97	Ns	2.28	11.48	13.4	9.41
CV	7.8	8.7	4.7	6.31	12.3	9.4	7.75	9.9	10

Means followed by the same letter within a column are statistically non-significant at $p \le 0.05$ probability level; CM =centi meter; CV=Coefficient of Variance; LSD= Least Significant Difference.

consistent with the result of Maheshwar (2005) who reported higher branch number plant⁻¹ at the wider spacing than the closest in Stevia. Similarly result was reported by Beemnet *et al.* (2012) on Rose Scented Geranium (*Pelargonium graveolens*), Zewdinesh *et al.* (2011) on Artemisia (*Artemisia annua* L.).

Fresh leaf weight per plant (g p⁻¹)

The main effect of intra-row and inter-row spacing showed a highly significant (P<0.01, Table 1) and their interaction had significantly (P<0.05, Table 1) affected fresh leaf weight per plant in 2013/14 cropping season and pooled mean.

In 2013/14 cropping season, maximum fresh leaf weight plant⁻¹ (246.4g p⁻¹) was obtained from the combined spacing of 60cm x 40cm inter-row and intrarow spacing respectively which was statistically similar with fresh leaf weight plant⁻¹(227.8 g p⁻¹) and (221.8 g p⁻¹) recorded from the combined spacing of 60cm x 35cm and 50cm x35cm inter-row and intra-row spacing respectively. Whereas the lowest fresh leaf weight (149.7 g p⁻¹) was

recorded at the interaction effect of inter-row and intrarow spacing of 40cm and 20cm respectively (Table 5). Fresh leaf weight per plant at wider spacing showed 64.6% increment over the closest spacing during 2013/14. In 2014/15 cropping season the main effect of inter-row and intra row spacing had significantly (P<0.05, Table 2) affected fresh leaf weight plant¹. However, their interaction had no a significant effect on fresh leaf weight plant⁻¹. Maximum fresh leaf weight (183 g p⁻¹) and (190 g p⁻¹) was obtained from 60cm inter-row and 40cm intrarow spacing respectively. The lowest fresh leaf weight plant $^{-1}$ (164g p $^{-1}$) and (160.1 gp $^{-1}$) was obtained from the spacing of 40cm inter-row and 20cm intra row spacing (Table 3). In agreement with this study, Taleie et al (2012) reported maximum fresh leaf weight per plant at wider spacing on Stevia. The finding is also in line with the work of Zewdinesh et al (2011) on Artemisia (Artemisia annua L.). In increasing plant spacing from 20cm to 40cm and from 40cm to 60cm intra-row and inter-row spacing respectively fresh leaf weight per plant was increased. At wider spacing, there is less inter-row and intra-row plant competition for available resources and the plant have a chance to develop more number of

branches and leaf that could be the reason for maximum fresh leaf weight per plant obtained than in closer spacing.

Fresh leaf weight (Kg ha⁻¹)

The analysis of variance showed that the main effect of inter and intra-row spacing showed highly significant (P<0.01) differences in fresh leaf weight (kg ha¹) and significantly (P<0.05) influenced by the interaction effect of inter and intra-row spacing in 2013/14 cropping season and polled mean (Table 1).

The highest fresh leaf weight (19,467 kg ha⁻¹) was obtained from the combination of 40 x 20 cm spacing, while the lowest (10269 kg ha⁻¹) leaf, fresh weight was recorded from the combination of 60 x 40cm inter and intra-row spacing in 2013/14 (Table 5). The next highest fresh leaf weight (15205 kg ha⁻¹) was recorded from the combined spacing of 40 x 25cm which was statistically at par with the fresh leaf weight (13609 kg ha⁻¹), (13669kg ha⁻¹) (14974 kg ha⁻¹), (14770kg ha⁻¹), (13563kg ha⁻¹) and (14869kg ha⁻¹) obtained from the combination of 40x30cm, 40x40cm, 50x20cm, 50x25cm, 50x30cm and 60x25cm spacing respectively in the first harvesting year (Table 5). In 2013/14 cropping season for the interrow spacing 40cm, 50cm & 60cm as the intra-row spacing increased from 20cm- 40cm, the leaf fresh weight per hectare was decreased by 29.8%, 51.5% & 47.2% respectively (Table 5). While spacing between plants and rows decreases, fresh leaf yield per hectare was found to be increased. In 2014/15 leaf, fresh weight per hectare was highly significantly (P<0.01, Table 4) influenced by the main effect of inter-row and intra-row spacing. However, interaction of intra and inter-row spacing had no significant difference in fresh leaf weight per hectare.

In 2014/15 cropping season the maximum fresh leaf weight (16470.1 kg ha⁻¹) and (14433.9 kg ha⁻¹) were recorded from 20cm intra-row and 40cm inter-row spacing. The lowest fresh leaf weight (9720.3 kg ha⁻¹) and (10597.6 kg ha⁻¹) were obtained from 40cm intra-row and 60cm inter-row spacing (Table 4). The decrease in fresh leaf yield per hectare with increasing plant spacing was reported by Madan et al. (2010) in stevia. This finding is also in line with the works of Stevia spacing reported by; Basuki, 1990; Carneiro et al., (1992); Murayama et al. (1990). The decreased in fresh leaf yield per hectare with increased plant spacing was reported by Taleie et al. (2012) in Stevia, Zewdinesh (2010) in Artemisia. Similar finding were also reported by Solomon and Beemnet (2011) for Japanese mint and Beemnet et al (2012) on Rose scented geranium. Lower fresh leaf weight per unit area in wider spacing could be due to the accommodation of the least number of plants per unit area.

Above ground fresh biomass (kg ha⁻¹)

Above ground fresh biomass (kg ha⁻¹) was highly significantly affected (P<0.01) by the main effect of inter and intra-row spacing in both years and significantly (P<0.05) influenced by their interaction in 2013/14 cropping season and polled mean (Table 1 & 2). Maximum aboveground fresh biomass (25002 kg ha⁻¹) was obtained from inter row spacing of 40cm combined with intra row spacing of 20cm which were statistically similar to the value obtained at the combined spacing of 40x25cm, 40x30cm, 40x40cm, 50x20cm, 50x25cm, 50x30cm, 60x20cm and 60x25cm spacing in 2013/14 cropping year (Table 5). The lowest aboveground fresh biomass (15624 kg ha⁻¹) was recorded at the combination of 60x40cm inter and intra-row spacing respectively. While the spacing increased from 40x20cm to 60x40cm inter and intra-row spacing fresh aboveground biomass per hectare was decreased by 37.5% in 2013/14 cropping season (Table 5). Maximum aboveground fresh biomass (27547 kg ha⁻¹) and (23619.8kgha⁻¹) was recorded from 20cm inter-row and 40cm intra-row spacing respectively in 2014/15.

The lowest aboveground fresh biomass (15595kg ha⁻¹) and (17460.1kg ha⁻¹) was recorded from 40cm intra-row and 60cm inter-row spacing respectively (Table 4). This finding is in agreement with the result of Kumar et al. (2014) who reported maximum fresh aboveground biomass yield per hectare at closer spacing than the wider spacing on Stevia. Similarly to the present study, Solomon and Beemnet (2011) reported a decreased trend of fresh above ground biomass yield with increased row spacing from 30 to 60cm for Japanese mint. In addition to this previous research findings conducted by Nigussie et al. (2015) on Artemisia, Zewdinesh (2010) on A. annua supports this finding. An increase in fresh aboveground biomass in higher plant population density may be due to the contribution of higher number of plants per unit area which intern gives higher fresh leaf vield ha

Dry leaf weight (kg ha⁻¹)

The analysis of variance showed highly significant (P<0.01, Table 1 & 2) differences in dry leaf weight (kg ha⁻¹) due to the main effect of inter and intra-row spacing in both years and significantly (P<0.05, Table 5) influenced by the interaction effect of inter and intra-row spacing during 2013/14 cropping season and polled mean. During 2013/14 cropping season maximum dry leaf weight (7834 kg ha⁻¹) was registered at the combination of 40x20cm inter-row and intra-row spacing while the lowest (3623 kg ha⁻¹) leaf weight was recorded from the combination of 60cm inter and 35cm intra-row spacing (Table 5). The decrease in dry leaf weight in kg

Table 4: Main effect of intra-row and inter-row spacing on yield and yield components of Stevia for two consecutive cropping seasons (2013/14 to 2014/15)

Fresh leaf w	veight (kg ha`	1)	Above grour	nd fresh biomas	s (kg ha ⁻¹)	Dry leaf weight (kg ha ⁻¹)	
2013/14	2014/15	Pooled	2013/14	2014/15	Pooled	2013/14	2014/15	Pooled
		mean			mean			mean
16436.7a	16470.1a	16453.4a	25230.3a	27547a	26388.7a	6392.9a	4773.7a	5583.3a
14632.8b	14047.7b	14340.3b	23937.2a	23160b	23548.6b	5487.1b	4025.5b	4756.3b
12697.5c	11783.2c	12240.4c	21555.5b	19005c	20280.3c	4923.0bc	3368.4bc	4145.7c
12012.3cd	10230.9d	11121.6d	19699.7bc	17165cd	18432.4cd	4530.3cd	3091.8c	3811.05d
11123.0d	9720.3d	10421.7d	18308.5c	15595d	16951.8d	4114.2d	2862.7c	3488.45d
1111.2	1375.3	823.4	1915.5	2483.9	1851.9	585.4	724.2	411.2
)								
14892.7a	14433.9a	14663.3a	23168.4a	23619.8a	23394.1a	5633.3a	4314.0a	4973.65a
13082.9b	12319.8b	12701.4b	21763.6ab	20403.0b	21083.3b	5022.7b	3513.7b	4268.2b
12165.8c	10597.6c	11381.7c	20306.6b	17460.1c	18883.4c	4612.5b	3045.5b	3829c
860	1065.3	637.7	1483.8	1924	1434.4	453.4	560.9	318.5
8.31	11.1	9.6	8.81	13.2	13.2	11.5	19.9	14.2
	2013/14 16436.7a 14632.8b 12697.5c 12012.3cd 11123.0d 1111.2 14892.7a 13082.9b 12165.8c 860	2013/14 2014/15 16436.7a 16470.1a 14632.8b 14047.7b 12697.5c 11783.2c 12012.3cd 10230.9d 11123.0d 9720.3d 1111.2 1375.3 14892.7a 14433.9a 13082.9b 12319.8b 12165.8c 10597.6c 860 1065.3	mean 16436.7a 16470.1a 16453.4a 14632.8b 14047.7b 14340.3b 12697.5c 11783.2c 12240.4c 12012.3cd 10230.9d 11121.6d 11123.0d 9720.3d 10421.7d 1111.2 1375.3 823.4 13082.9b 12319.8b 12701.4b 12165.8c 10597.6c 11381.7c 860 1065.3 637.7	2013/142014/15Pooled mean2013/14 mean16436.7a16470.1a16453.4a25230.3a14632.8b14047.7b14340.3b23937.2a12697.5c11783.2c12240.4c21555.5b12012.3cd10230.9d11121.6d19699.7bc11123.0d9720.3d10421.7d18308.5c1111.21375.3823.41915.514892.7a14433.9a14663.3a23168.4a13082.9b12319.8b12701.4b21763.6ab12165.8c10597.6c11381.7c20306.6b8601065.3637.71483.8	2013/14 2014/15 Pooled 2013/14 2014/15 mean 16436.7a 16470.1a 16453.4a 25230.3a 27547a 14632.8b 14047.7b 14340.3b 23937.2a 23160b 12697.5c 11783.2c 12240.4c 21555.5b 19005c 12012.3cd 10230.9d 11121.6d 19699.7bc 17165cd 11123.0d 9720.3d 10421.7d 18308.5c 15595d 1111.2 1375.3 823.4 1915.5 2483.9 14892.7a 14433.9a 14663.3a 23168.4a 23619.8a 13082.9b 12319.8b 12701.4b 21763.6ab 20403.0b 12165.8c 10597.6c 11381.7c 20306.6b 17460.1c 860 1065.3 637.7 1483.8 1924	2013/142014/15Pooled2013/142014/15Pooledmeanmeanmeanmean16436.7a16470.1a16453.4a25230.3a27547a26388.7a14632.8b14047.7b14340.3b23937.2a23160b23548.6b12697.5c11783.2c12240.4c21555.5b19005c20280.3c12012.3cd10230.9d11121.6d19699.7bc17165cd18432.4cd11123.0d9720.3d10421.7d18308.5c15595d16951.8d1111.21375.3823.41915.52483.91851.914892.7a14433.9a14663.3a23168.4a23619.8a23394.1a13082.9b12319.8b12701.4b21763.6ab20403.0b21083.3b12165.8c10597.6c11381.7c20306.6b17460.1c18883.4c8601065.3637.71483.819241434.4	2013/14 2014/15 Pooled 2013/14 2014/15 Pooled 2013/14 16436.7a 16470.1a 16453.4a 25230.3a 27547a 26388.7a 6392.9a 14632.8b 14047.7b 14340.3b 23937.2a 23160b 23548.6b 5487.1b 12697.5c 11783.2c 12240.4c 21555.5b 19005c 20280.3c 4923.0bc 12012.3cd 10230.9d 11121.6d 19699.7bc 17165cd 18432.4cd 4530.3cd 11123.0d 9720.3d 10421.7d 18308.5c 15595d 16951.8d 4114.2d 1111.2 1375.3 823.4 1915.5 2483.9 1851.9 585.4 14892.7a 14433.9a 14663.3a 23168.4a 23619.8a 23394.1a 5633.3a 13082.9b 12319.8b 12701.4b 21763.6ab 20403.0b 21083.3b 5022.7b 12165.8c 10597.6c 11381.7c 20306.6b 17460.1c 18883.4c 4612.5b 860 1065.3 637.7	2013/14 2014/15 Pooled 2013/14 2014/15 Pooled 2013/14 2014/15 16436.7a 16470.1a 16453.4a 25230.3a 27547a 26388.7a 6392.9a 4773.7a 14632.8b 14047.7b 14340.3b 23937.2a 23160b 23548.6b 5487.1b 4025.5b 12697.5c 11783.2c 12240.4c 21555.5b 19005c 20280.3c 4923.0bc 3368.4bc 12012.3cd 10230.9d 11121.6d 19699.7bc 17165cd 18432.4cd 4530.3cd 3091.8c 11123.0d 9720.3d 10421.7d 18308.5c 15595d 16951.8d 4114.2d 2862.7c 1111.2 1375.3 823.4 1915.5 2483.9 1851.9 585.4 724.2 14892.7a 14433.9a 14663.3a 23168.4a 23619.8a 23394.1a 5633.3a 4314.0a 13082.9b 12319.8b 12701.4b 21763.6ab 20403.0b 21083.3b 5022.7b 3513.7b 12165.8c

Means followed by the same letter within a column are statistically non-significant at p<0.05 probability level; CM =centi meter; CV=Coefficient

of Variance; LSD= Least Significant Difference

Table: 5 Interaction effect of inter and intra- row spacing on a fresh leaf weight gram per plant, fresh leaf weight kg ha⁻¹, fresh aboveground biomass kg ha⁻¹ and dry leaf weight kg ha⁻¹ of Stevia in 2013/14

Treatment	Fresh leaf weight per	Fresh leaf weight (kg	Aboveground fresh	Dry leaf weight (kg
combination	plant (g p ⁻¹)	ha ⁻¹)	biomass (kg ha ⁻¹)	ha ⁻¹)
(cm)	2013/14	2013/14	2013/14	2013/14
40x20	155.7 hi	19467a	25002 a	7834 a
40x25	152.0 i	15205 b	24688 a	5988 b
40x30	163.3 ghi	13609 bc	22969 ab	4900 cde
40x35	175.2 fghi	12514 cde	20568 bc	4648 def
40x40	218.7 bc	13669 bc	22615 ab	4797cdef
50x20	149.7i	14974 b	24525 a	5746 bc
50x25	184.6 defg	14770 b	24406 a	5396 bcd
50x30	203.4 bcde	13563 bc	23536 ab	5262 bcd
50x35	221.8 abc	12676 cd	20727 bc	5086 bcd
50x40	188.6 defg	9432 f	15624 d	3623 g
60x20	178.4 efgh	14869 b	26164a	5600 bcd
60x25	208.9 bcd	13924 bc	22717 ab	5078 bcd
60x30	196.6 cdef	10921 def	18161 cd	4607defg
60x35	227.8 ab	10847 ef	17805 cd	3857 fg
60x40	246.4 a	10269 f	16686 d	3922 efg

Table 5. Continuation

LSD%	25.66	1778.5	3604.7	1007.5
CV	8.0	7.9	9.9	19.9

Means followed by the same letter within a column are statistically non-significant at $p \le 0.05$ probability level; CM =centi meter; CV=Coefficient of Variance; LSD= Least Significant Difference

Table: 6 Association among growth and yield related	characters of stevia tested under varying intra-row and inter-row
spacing in 2013/14 cropping season	

Parameters	PH	FLWP	FLW	FAGB	NBPP	DLW
PH(cm)	1					
FLWP	0.70***	1				
FLW	0.77***	0.64***	1			
AGFB	0.72***	0.66***	0.88***	1		
NBPP	-0.41***	0.03ns	-0.30*	-0.19*	1	
DLW	0.64***	0.58***	0.88***	0.87***	-0.24*	1

*Significant at p<0.05, ** highly significant at p<0.01, Ph = Plant height, NBPP= Number of branches per plant, fresh leaf weight per plant, FLWPH = fresh Leaf weight per hectare, FAGBY =Fresh aboveground biomass yield and DLWY= dry leaf weight yield .

Table 7. Association, among growth and yield related characters of stevia tested under varying intra-row and inter-row	/
spacing in 2014/15 cropping season	

Parameters	PH	NBPP	FLWP	FLW	FAGB	DLW
PH(cm)	1					
NBPP	0.42*	1				
FLWP	0.24*	0.32*	1			
FLW	0.23*	0.14ns	0.31*	1		
AGFB	0.35*	0.19*	0.22*	0.95*	1	
DLW	0.02ns	0.02ns	0.29*	0.80*	0.72*	1

*Significant at p<0.05, ** highly significant at p<0.01, Ph = Plant height, NBPP= number of branch per plant, leaf fresh weight per plant, LFWPH = leaf fresh weight per hectare, FAGBY = fresh aboveground biomass yield, and DLWY= dry leaf weight yield

ha⁻¹ due to increase in inter and intra-row spacing from 40cmx20cm to 60cmx35cm was 53.7% (Table 5). This finding was consistent with the result of Taleie *et al* (2012) who reported higher dry leaf weight kg ha⁻¹ at highest plant density for stevia. Kumar *et al* (2014) also reported a higher value of dry leaf weight ha⁻¹ with narrow spacing in Stavia. Murayama et al., (1990) also had reported that dry leaf yield was higher in denser planting. A similar pattern was also reported by Solomon and Beemnet (2011) on Japanese mint.

Correlation analysis, among yield and yield parameters

The correlation coefficient among different variable revealed that, the stevia yield and yield components were significantly and positively correlated with each other in both years. Fresh leaf weight was positively and significantly correlated with plant height $(r=0.77^{***})$ & $(r=0.23^*)$ and fresh leaf weight per plant $(r=0.70^{***})$ & $(r=0.31^*)$ in 2013/14 and 2014/15 cropping season

respectively. Fresh aboveground biomass was positive and very highly significant and significantly correlated with plant height (r=0.72***& r= 0.35*), fresh leaf weight per plant (r=0.66***& r= 0.22*), fresh leaf weight ha⁻¹ (r=0.88***& r=0.95**) and dry leaf weight kg ha⁻¹ (r= 0.87***& r=0.80**) in 2013/14 and in 2014/15 respectively copping season (Table 6 &7).

CONCLUSION

The two consecutive study years showed that the highest economic fresh leaf weight (19467kg ha⁻¹) and dry leaf weight (7834kg ha⁻¹) was recorded from the combined spacing of 20cm intra-row and 40cm inter-row spacing. However; considering the difficult condition, we met during weeding and watering, we, recommend that the best combined intra-row and inter-row spacing for Stevia is 25cm x 40cm rather than 20cm x40cm to attain maximum yield under appropriate management conditions for Wondo genet and similar agro ecology.

ACKNOWLEDGEMENTS

We would like to acknowledge Land and Water Resource Research Directorate and Wondo Genet Agricultural Research Center for providing all the necessary facilities and supports during the entire experimentation. Our sincere appreciation goes to Muleta Gadisa, Asegedech Abebe, Zerihun Jonba and Bereket Tukisa, for their help in writing up, field and laboratory works.

REFERENCES

- 1. Ahmed, A., Huda, M.N., Mandal, C., Alam, K.A., Reza, M.S. H. & Wadud A. (2007). In vitro morphogenic response of different explants of stevia (*Stevia rebaudiana L.*). International Journal of Agriculture Research 2: 1006-1013.
- 2. Basuki, S. (1990). Effect of black plastic mulch and plant density on the growth of weeds and stevia. BIOTROP *special publication* 38, 107-113.
- Beemnet, M., Zewdinesh, D., Zinash, T., Solomon, A., Biniyam, Y., Fikadu, G., Haileslassie, G. & Bekri, M. (2012). Yield and yield components of rose-scented geranium (*Pelargonium graveolens*) as influenced by plant population density in Ethiopia. *Medicinal and Aromatic Plant Science and Biotechnology* 2 (1), 60-68.
- 4. Carneiro, J. W. P., Martins, E. N., Guedes, T. A., & Dasilva, M. A. (1992). The performance of stevia crops transplanted in different densities and double spacing. *Pesquisa agropecuaria Brasileira* 27, 1273-1282.
- 5. Debnath, M. (2008). Clonal propagation and antimicrobial activity of an endemic medicinal plant Stevia rebaudiana. Journal of Medicinal Plants Research 2 (2), 045-051.
- 6. Jackson, A.U., Tata, A., Wu, C., Perry, R.H., Haas, G., West, L., Cooks, G.R. (2009). Direct analysis of Stevia leaves for diterpene glycosides by desorption electrospray ionization mass spectrometry. Analyst, 134: 867-874.
- 7. Katayma, O., Sumida, T., Hayashi, H., MItsuhashi, H. (1976). The Practical Application of Stevia and Research and Development Ddata (English translation). ISU Company, Japan. 747 pp.
- 8. Khorshidi, J., Tabatabaei, M.F., Omidbaigi, R., & Sefidkon, F. (2009). Effect of density of planting on yield and essential oil components of fennel (*Foeniculum vulgare Mill* Var. Soroksary). Journal of Agriculture Science 1(1), 152-157.
- 9. Kumar, R., Sood S., Sharma S., Kasana R.C., Pathania V.L., Singh B., & Singh R.D. (2014). Effect of plant spacing and organic mulch on growth, yield and quality of natural sweetener plant Stevia and soil fertility in western Himalayas. International Journal of Plant Production 8(3), 311-334.
- 10 Lee, J. I., Kang, K. H., Park, H.W., Ham, Y.S., Park,

C.H. (1980). Studies on the new sweetening source plant, Stevia rebaudiana in korea. II. Effects of fertilizer rates and planting density on dry leaf yields and various agronomic characteristics of Stevia rebaudiana. Research Reports of the Office of Rural Development (Crop Suwon) 22, 138-144.

- 11. Madan, S. Ahmad, S., Singh, G.N., Kohli, K., Kumar Y., Singh, R., Garg, M. (2010). Stevia rebaudiana (Berr.) Bertoni- A review. Indian journal of natural products and resources 1(3), 267-286.
- Maheshwar, HM., (2005). Effect of different levels of nitrogen and dates of planting on growth and yield of Stevia (Stevia rebaudianaBert.). MSc Thesis. Department of Horticulture College of Agriculture, Dharwad University of agricultural sciences, Dharwad, 66 pp.
- 13. Murayama, S., Kayano, R., Miyazato, K., and Nose, A. (1990). Studies on the cultivation of Stevia rebaudiana .II. Effect of fertilizer rates, planting density and seedling clones on growth and yield. *Science Bulletin of the college of Agriculture, University of the Ryukyus, Okinawa* 27, 1-8.
- 14. Naghdi Badi, H., Yazdani, D., Mohammad Ali, S., Nazari, F. (2004). Effects of spacing and harvesting time on herbage yield and quality/quantity of oil in thyme, Thymus vulgaris L. Industrial Crops and Products 19: 231–236.
- 15. Nigussie, A., Lule, B., Gebre, A., (2015). Effect of plant population density on growth and yield of Artemisia (Artemisia annua L.). International journal of Advanced Biological and Biomedical Research, 3 (4), 384-390
- 16. Norsworthy, J.K., and Emerson, R.S. (2005). Effect of row spacing and soybean genotype on main stem and branch yield. Agronomy Journal 97:919-923.
- 17. Ojha, A., Sharma, V.N. and Sharma, V. (2010). An efficient protocol for in vitro clonal propagation of natural sweetener plant (Stevia rebaudiana Bertoni). African Journal of Plant Science 4(8), 319-321.
- 18. Ramesh, K., Singh, V., Megeji, NW. (2006). Cultivation of Stevia rebaudiana. Bertoni a comprehensive review.
- 19. Robinson, H., & King, R.M. (1977). The biology and chemistry of the compositae. Eupataoriae-Systematic Review, 1: 286-437.
- 20. Serio, L. (2010). La Stevia rebaudiana, une alternative au sucre. Phytothérapie, 8, 26–32.
- Soejarto, DD. (2002). Botany of Stevia and Stevia rebaudiana. In Kinghorn AD (ed) Stevia. Department of Medicinal Chemistry and Pharmacognosy University of Illinois at Chicago USA.18-39.
- Solomon, A., Beemnet, M. (2011). Row spacing and harvesting age affect agronomic characteristics and essential oil yield of Japanese mint (*Mentha arvensis* L.). *Medicinal and Aromatic Plant Science and Biotechnology* 5(1), 74-76.

- 23. Sumon, M.H., Mostofa, M., Jahan, M.S., Kayesh, M.E.H. and Haque, M.A. (2008). Comparative efficacy of powdered form of Stevia (Stevia rebaudianaBertoni) Leaves and glimepiride in diabetic rats. Bangladesh Journal of Veterinary Medicine,6 (2): 211-215.
- 24. Taleie, N., Hamidoghli, Y., Rabiei, B. & Hamidoghli (2012). Effects of plant density and transplanting date on herbage, stevioside, phenol and flavonoid yield of Stevia rebaudiana Bertoni. International Journal of Agriculture and Crop Sciences 4 (6): 298-302.
- 25. Zewdinesh. D., Bizuayehu, T., & Daniel, B. (2011). Leaf, Essential Oil and Artemisinin Yield of artemisia (Artemisia annua L.) as influenced by harvesting age and plant population density. World Journal of Agricultural Sciences 7 (4): 404-412.